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DUST-ION-ACOUSTIC PRECURSOR OF A SHOCK WAVE

UDC 533.951V. A. Pavlov

The effect of charged dust particles on the structure of the plasma precursor of a strong shock wave
is studied. The conditions of formation of a weak discontinuity front are obtained. It is shown
that resonant modes can occur in which the concentration of dust particles in the neighborhood of
the front increases. In the case of positively charged particles of dust, the formation of a localized
compaction region in the form of a soliton “bunch” is possible and the dependence of the amplitude of
the soliton on shock-wave velocity is nonmonotonic. In the case of negatively charged particles of dust,
a rarefaction wave is formed. The indicated phenomena can substantially affect the concentration of
the neutral component in a slightly ionized plasma.

Introduction. Recently, interest in nonlinear processes in partly and slightly ionized, multicomponent
plasmas has considerably increased [1–9]. This is motivated by studies of the structure of planetary rings and
cometary tails, flows of the solar wind around the Earth, the formation of stars, the nature of ball lightning, the
formation of plasma-dust crystals, the evolution and formation of shock-wave structures in dust plasmas, abnormal
influence of the plasma component on the flow of a slightly ionized plasma around bodies, the structure of the
shock-wave precursor in a plasma, etc. The multicomponent nature of plasmas can be ensured by the presence
of various sorts of ions and charged macroscopic particles (dust, aerosols, clusters, etc.). Usually, a dust-plasma
system is open and exists in the presence of an extraneous source. In this case, the charged particles of dust can be
approximately treated as an additional heavy plasma component for which the condition of quasineutrality relative
to the dust is satisfied [6]:

(4/3)πndD
3
d � 1 (1)

or

n
1/2
d Z3

d � (4 · 108)T 3/2
d .

Here nd [cm−3] is the concentration, Dd is the Debye radius, Td [eV] is the temperature, and Zd is the charging
number (charge of a dust particle in electron charge units); the subscript “d” corresponds to dust particles.

Inequality (1) corresponds to the state of a dust system with a “small” concentration and a “small” charge.
If condition (1) is violated, the dust component becomes “special” [6]: it is not described by the approximation
of a continuous medium, and, hence, kinetic effects should be taken into account in this case. This situation
is encountered in problems of the formation of dust-plasma crystals, drops, and clouds. There are a number of
phenomena related to the electrification of dust particles [5].

Usually, an unperturbed plasma is electrically neutral:

ni0 = ne0 + Zdnd0.

Here and below, the subscripts “i” and “e” and correspond to ions and electrons; the subscript 0 characterizes the
unperturbed state; Zd > 0 for negatively charged dust particles, and Zd < 0 for positively charged particles.

In some cases, an unperturbed plasma is slightly ionized (see, e.g., [6, 10–12]): δ0 ≡ ni0n
−1
n0 = 10−5–10−7

(the subscript “n” corresponds to neutral particles). This simplifies the description of the interaction of a shock
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wave with the plasma components in the initial stage of formation of regions with elevated charge concentration;
in this case, the action of charges on the neutral component is ignored. At this stage, the field of the neutral
component is considered specified: it is a source of perturbations in the plasma. For flows of a slightly ionized dust
plasma around bodies under laboratory conditions, condition (1) is satisfied in most cases and Zd ≈ const [11, 12].

The joint action of strong nonlinearity and dispersion can result in the formation of localized regions of
elevated ionization level [12–14]. In this case, the effect of charges on neutral particles cannot be ignored. Elastic
collisions and other interaction mechanisms in these regions can lead to a strong effect of charged particles on the
neutral component. In addition, in these region, violation of condition (1) is possible: dust begins to “scatter” the
shock wave due to the flow of “hot” neutral particles (Tn > Td) on the heavy dust particles. Under these conditions
there may be significant attenuation of the shock-wave intensity and even failure of the shock wave.

1. The formulation of the problem is similar to that in [13, 14]. A new point is consideration of the additional
charged dust component, for which the quasineutrality condition (1) is satisfied. We study a one-dimensional steady
perturbation in a slightly ionized, nonisothermal plasma (Te � Ti ≈ Tn > Td) produced by a strong shock wave of
the neutral component. This shock wave is specified as

Vn = Vn1η(−ξ), ξ = x− ct, η(x) =

{
1, x > 0,

0, x < 0,
ρn = ρn0 + (ρn1 − ρn0)η(−ξ),

where x and t are the coordinate and time, c = const is the shock-wave speed, and Vn and ρn are the velocity and
density of the neutral component; the subscripts 0 and 1 correspond to the states ahead of and behind the front.

Taking into account the slight ionization of the plasma, we ignore the effect of charged particles on the
neutral component. The processes in the plasma are described by the following system of equations [condition (1)
is assumed to be satisfied]:

∂nj
∂t

+
∂

∂x
(njVj) = 0, j = {i, e,d},

( ∂
∂t

+ Vi
∂

∂x

)
Vi = |e|m−1

i E − νi(Vi − Vn),

0 = −ne|e|E − kTe
∂ne

∂x
, (2)

( ∂
∂t

+ Vd
∂

∂x

)
Vd = −Zd|e|m−1

d E − νd(Vd − Vn),

ε0
∂E

∂x
= |e|(ni − ne − Zdnd), ni0 − ne0 − Zdnd0 = 0.

Here Te � Ti, Te � Td, Te = const, Zd = const, Vj , and Tj are the velocity and temperature of the corresponding
plasma component, m is the mass, −|e| is the electron charge, E is the electric field, ε0 is the permittivity of free
space, and k is the Boltzmann constant.

For Zd = 0, system (2) describes the ion-acoustic waves produced by the extraneous source (Vn). The
situation Zd 6= 0 corresponds to the case of charged particles of dust. The fields described by system (2) will
be referred to as dust-ion-acoustic fields (this term is not conventional). Because the process is steady-state (the
parameter fields depend on the single variable ξ), the partial equations reduce to the following system of three
coupled ordinary differential equations for the functions Vi, nd, and Ψ:

d

dξ

[1
2

(Vi − c
c

)2

+
Ψ

M 2
i

]
= − νi

c2
(Vi − Vn); (3)

d

dξ

[1
2

(nd0

nd

)2

− βΨ
M 2

i

]
= −νd

c

(
1− nd0

nd
− Vn

c

)
; (4)

Vi/c = 1− (1 + α)/(F (Ψ) + αndn
−1
d0 ). (5)

Here F (Ψ) = exp Ψ − 2D2
e (d2Ψ/dξ2), D2

e = ε0kTe/(2ne0e
2), V 2

s = kTe/mi, α = Zdnd0/ne0, β = Zdmi/md, and
M i = c/Vs is the ion Mach number. In deriving Eq. (5), we used boundary conditions that assume the existence of
an unperturbed state in the laboratory coordinate system:
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ξ =∞: Vi = 0, nd = nd0, ni = ni0, Ψ = 0.

The fields of the parameters E, ne, ni, and Vd are related to the solutions of system (3)–(5) by formulas

E = −miV
2
s |e|−1 dΨ

dξ
, ne = ne0 exp Ψ, ni(Vi − c) = −ni0c, nd(Vd − c) = −nd0c.

At infinity, the unperturbed state takes the form

Ej(∞) = 0, nj(∞) = nj0, j = {i, e,d}.

We first consider the limiting case (long-wave approximation) De = 0, which corresponds to the description
of slowly varying fields ignoring higher derivatives. In the neighborhood of the fronts there are high field gradients
and the role of higher derivatives is important; therefore, the following remark is relevant.

2. For Zd = 0 (no charged particles of dust) in the long-wave approximation (De = 0) the gradients of the
parameters in the precursor increase with increase in the ionic Mach number M i to unity. For M i = 1, the first
derivatives undergo a discontinuity (weak) at a certain point ξ = ξ∗ [14], which is due to the absence of a continuous
solution satisfying the boundary condition at ξ =∞. Let us show that in the presence of dust, a weak discontinuity
can also exist. This condition holds in the long-wave approximation for M i = M h ≡

√
1 + α(1 + β). We assume

that such a discontinuity exists and its coordinate is ξ = ξh. Then, for ξ > ξh, the state of the fields should be
unperturbed, and for ξ < ξh (behind the front) in the neighborhood ξ ≈ ξh, the fields can be written as expansions

Vi = V ′h(ξ − ξh) + 0,5V ′′h (ξ − ξh)2 + . . . ,

Ψ = Ψ′h(ξ − ξh) + 0,5Ψ′′h(ξ − ξh)2 + . . . , nd = nd0 + n′h(ξ − ξh) + 0,5n′′h(ξ − ξh)2 + . . . ,

where the fields denoted by the subscript h are constant quantities; primes denote derivatives. Using these expan-
sions for zeroth-order terms in (3) and (4) and for first-order terms in (5), we obtain the following closed system of
equations in the region ξ < ξh:

c−1V ′h −M−2
h Ψ′ = 0, n−1

d0 n
′
h + βM−2

h Ψ′h = 0, Ψ′h + αn−1
d0 n

′
h − (1 + α)V ′h = 0. (6)

From the condition of resolvability of the homogeneous system (6) it follows that

M 2
h = 1 + α(1 + β).

[Below it is shown that the value of M h coincides with the representation for the lower boundary M i of existence
of steady-state solutions for a collisionless plasma (νi = νd = 0 and De 6= 0).]

The first-order terms from (3) and (4) and the second-order terms from (5) form the system

−c−2[cV ′′h − (V ′h)2] + M−2
h Ψ′′h = −c−2νiV

′
h, −3n−2

d0 (n′h)2 + n−1
d0 n

′′
h + βM−2

h Ψ′′h = c−1νdn
−1
d0 n

′
h,

(7)
Ψ′′h + (Ψ′h)2 + αn−1

d0 n
′′
h − c−1(1 + α)V ′′h − 2(1 + α)c−2(V ′h)2 = 0.

From Eqs. (6) and (7) we obtain the expressions for the first derivatives of the fields behind the weak-discontinuity
front at ξ < ξh:

V ′h = −[νi(1 + α) + αβνd][(1 + β)(α− α1(β))(α− α2(β))]−1, Ψ′h = c−1M 2
hV
′
h;

n′h = −βnd0c
−1V ′h. (8)

Here α1,2 ≡ [2(1 + β)]−1[1− 2β − 3β2 ±
√

(1− 2β − 3β2)2 + 8(1− β2) ]. As was noted above, ahead of the weak-
discontinuity front (ξ > ξh) there is an unperturbed state Vi = 0, Ψ = 0, and nd = nd0.

In the absence of dust particles (Zd = 0), we obtain the well-known result [14]: M h = 1 and V ′h = −νi/2.
For positively charged dust, M h < 1 at −1 < β < 0. If β < −1, then M h > 1. It should be noted that in most
situations that arise, |β| � 1 but there may be conditions under which |β| > 1. For α = −1, a rare situation arises:
as a first approximation, ion-neutral collisions do not influence the structure of the field in the neighborhood of the
front (the parameters V ′h, Ψ′h, and n′h do not depend on νi). According to (8), the derivatives V ′h and n′h for β < 0
have the same sign, and for negatively charged dust, M h > 1 and signV ′h = − signn′h. The last relation implies
the existence of a rarefaction wave in the dust component in the case of negatively charged dust: nd < nd0. An
interesting circumstance is the presence of “resonant” properties of a dust plasma. In the present formulation of the
problem considered, in the regime M i → M h, the parameters V ′h, Ψ′h, and n′h can become infinite as α→ α1,2(β).
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The production of a dust plasma with parameters satisfying the relation α = α1,2(β) is of special interest because
in the regime M i → M h, a region of elevated concentration of dust particles should form.

3. We study the structure of small-amplitude fields for M i 6= M h away from the front ξ = 0, restricting
ourselves to a linear approximation of Eqs. (3)–(5):

c−1 dVi

dξ
−M−2

i

dΨ
dξ

= νic
−2Vi, n−1

d0

dnd

dξ
+ βM−2

i

dΨ
dξ

= νdc
−1n−1

d0 (nd − nd0),

Ψ = −αn−1
d0 (nd − nd0) + (1 + α)c−1Vi.

Let us determine under what conditions losses lead to an exponential decrease of the fields in the region ξ →∞:

Vi ∼ Ψ ∼ (nd − nd0) ∼ exp (−ξ/ξ0), ξ0 > 0

[ξ0 satisfies the equation ξ2
0A1 + ξ0A2 +A3 = 0, A1 = νiνdM 2

i c
−2, A2 = νic

−1(M 2
i − αβ) + νdc

−1(M 2
i −M 2

h + αβ),
and A3 = M 2

i −M 2
h].

The coefficients An have the following properties: A1 > 0, A2,3 > 0 for M i > M h and A3 < 0 for M i < M h.
When the condition M i < M h is satisfied, the parameter ξ0 is positive, i.e. away from the shock-wave front, the
precursor enters the unperturbed state under an exponential law. If M i > M h, the parameter ξ0 is negative, i.e.,
there is no continuous precursor that enters the unperturbed state as ξ → +∞. For M i > M h, the continuous
solution of system (3)–(5) becomes ambiguous (cf. the case of Zd = 0 in [14]) and such that the unperturbed state
exists for ξ = +∞ rather than for ξ = −∞: Vi(−∞) = 0, Ψ(−∞) = 0, and nd(−∞) = nd0. To satisfy the boundary
conditions at infinity ξ = +∞, it is necessary to introduce a discontinuity.

4. Before introducing a discontinuity for M i > M h, we study the properties of the continuous ambiguous
solution of system (3)–(5) for M i > M h in the neighborhood of the point ξ = ξm, where the first derivatives of the
fields become infinite. With satisfaction of the condition ξ 6 ξm, the fields can be expanded as

Vi = Vm + c
∞∑
n=0

(ξm − ξ)(n+1)/2fn,

nd = nm + nd0

∞∑
n=0

(ξm − ξ)(n+1)/2ϕn, Ψ = Ψm +
∞∑
n=0

(ξm − ξ)(n+1)/2Φn.

The main terms of the expansion have the form

f0 = ±
√

2νiVmc−2,

ϕ0 = ±nmnd0

√
2νd(3c)−1(1− nd0n

−1
m ), Φ0 = ±M 2

i (1− Vmc−1)
√

2νiVmc−2,

and the dimensionless parameters y = nm/nd0 and z = 1− Vm/c satisfy the nonlinear equations√
y(y − 1)
z
√

1− z
= −β

√
3νiν

−1
d ,

β + M 2
i y

y
=

(1 + α)(1−M 2
i z

2)
αz3

,

and Ψm is obtained from the relation

exp Ψm = −αnmn−1
d0 + (1 + α)(1− Vmc−1)−1.

In the particular case of no dust particles, we obtain the well-known result [14]: 1 − Vmc−1 = M−1
i and

Ψm = M i.
In the case of positively charged dust, the coefficients f0, ϕ0, and Φ0 are real, and the expression for the

shock-wave precursor is continuous and ambiguous. By a standard procedure (see, e.g., [14]), this expression is
transformed to a discontinuous solution that describes a dust-ion-acoustic shock wave. For this, we employ the
relations for the discontinuity that follow from the laws of conservation of mass and momentum of ions and dust in
integral form:

−u[nj ] + [njVj ] = 0, j = {i, e,d},

[V 2
s niVi + niVi(Vi − u)] = 0, [−βV 2

s nd + ndVd(Vd − u)] = 0.

Here u is the rate of displacement of the discontinuity; square brackets denote a discontinuity of the corresponding
function at the dust-ion-acoustic wave front.
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Because of the steadiness of the problem, u = c. Unlike in problems of the dynamics of a continuous neutral
medium, in the formulation considered the discontinuity field is formed in a dissipative medium: νi 6= 0, νd 6= 0,
and De = 0.

In the case of negatively charged dust, the coefficients f0, ϕ0, and Φ0 become purely imaginary because
y > 1. This indicates that negatively charged dust prevents the formation of a discontinuity field and serves as
indirect evidence for disturbance of the steadiness. Therefore, it is necessary to refine the model that describes
the negatively charged dust plasma in the regime M i > M h (allowance for multiflow motion, turbulence, viscosity,
etc.).

For positively charged dust in the neighborhood of a dust-ion-acoustic front, the higher derivatives in system
(3)–(5) become essential and the role of dispersion (De 6= 0) is significant. For M i > M h, a negatively charged dust
plasma cannot be described using model (2) because a real solution of the problem is absent.

5. We study the steady-state solutions of system (3)–(5) in the limiting case of a collisionless plasma
(νi = νd = 0). A similar problem was considered in [7–9]. System (3)–(5) reduces to the following second-order
equation for the electric-field potential:

2D2
eΨ′′ = exp Ψ− ni0n

−1
e0 (1− 2M−2

i Ψ)−1/2 + α(1 + 2βM−2
i Ψ)−1/2. (9)

Equation (9) is an extension of the Sagdeev equation [15, Eq. (78)] to the case of allowance for the effect
of the third charged component for arbitrary values of the dimensionless parameters α and β. Integrating (9), we
obtain the first-order equation

DΨ′ = ±
√

Φ(0) − Φ(Ψ), Φ(0) = const,
(10)

Φ(Ψ) = 1− exp Ψ + M 2
i (1 + α)(1−

√
1− 2M−2

i Ψ) + M 2
i αβ

−1(1−
√

1 + 2βM−2
i Ψ), Φ(0) = 0.

The steady-state waves described by Eqs. (9) and (10) exist provided that the function Φ(Ψ) has a minimum
rather than a maximum: Φ′(Ψ) < 0, Ψ � 1, and Ψ > 0. From this we have the lower bound for the ion Mach
number

M i >
√

1 + α(1 + β) ≡ M h.

(The representation M i, which ensures the creation of a weak discontinuity for De = 0, νi 6= 0, and νd 6= 0 is given
in Sec. 2.)

In the limiting case of ion-acoustic waves, we obtain the well-known condition M i > 1. The value M h = 0
gives the upper bound for the concentration of positive dust particles |α|(1− |β|) > 1. If the last inequality is
violated, M h becomes an imaginary quantity and, hence, refinement of the calculation model is required. The fields
E, nj , and Vj are related to Ψ by the formulas

E = −miV
2
s |e|−1Ψ′, nen

−1
e0 = exp Ψ,

nin
−1
i0 = c(c− Vi)−1 = (1− 2M−2

i Ψ)−1/2, ndn
−1
d0 = c(c− Vd)−1 = (1 + 2M−2

i Ψβ)−1/2.

For β > 0, the concentration of dust particles decreases: nd < nd0 (a rarefaction wave arises for negatively
charged dust), and for β < 0 and nd > nd0 (a compression wave arises for positively charged dust).

Because physically realistic fields are described by real functions, it follows that in the present formulation
of the problem, the following conditions should be satisfied:

Ψ 6 Ψ∗ ≡ 2−1M 2
i , β > −1

or

Ψ 6 Ψ∗∗ ≡ −2−1β−1M 2
i , β < −1.

The solutions of Eq. (10) have properties typical of solutions of the Sagdeev equations [15]:
— for Φ(0) < 0, only periodic solutions exist;
— for Φ(0) = 0, solutions in the form of a solitary wave (soliton) exist;
— a soliton with maximum amplitude exists.
In the presence of dust particles there may be two representations for the maximum amplitude of the soliton:

Ψ∗ or Ψ∗∗ (Ψ∗ = 2−1M 2
∗ for β > −1 and Ψ∗∗ = −2−1|β|−1M 2

∗∗ for β < −1).
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For β > −1, a soliton of maximum amplitude Ψ∗ is described by the equation Φ(Ψ∗) = 0, which reduces to
the form

exp (2−1M 2
∗) = 1 +AM 2

∗,

where A(α, β) = 1 + α+ αβ−1(1−
√

1 + β ).
For β < −1, a soliton of maximum amplitude Ψ∗∗ is described by the equation Φ(Ψ∗∗) = 0, which reduces

to the form
exp (2−1|β|−1M ∗∗) = 1 +BM ∗∗,

where B(α, β) = (1− |α|)(1−
√

1− |β|−1 ) + αβ−1.
Generally, the critical values M ∗, M ∗∗, Ψ∗, and Ψ∗∗ depend on both the relative concentration (parameter α)

and on the mass ratio (parameter β). In the particular case of |β| � 1, we have max Ψ ≈ Ψ∗(α).
6. Let us consider the main properties of the dust-ion -acoustic precursor of a shock wave. In the situations

described in Secs. 2 and 4, weak and strong discontinuities can form, the role of higher derivatives in system (3)–
(5) is important, and the effect of spatial dispersion is therefore should be taken into account. A soliton plasma
“bunch” forms at the leading edge (cf. the case Zd = 0 in [14]). The occurrence of this soliton formation is due to
the smoothing of the shock due to the simultaneous action of dispersion and nonlinearity. In the case of positively
charged dust, the amplitude of the soliton increases as the ion Mach number increases from M h to M ∗ for β > −1
and to M i = M ∗∗ for β < −1. For M i > M ∗ (or M i > M ∗∗) there is failure of the “soliton” bunch. Therefore,
further improvement of the plasma model is required. If the charge of the dust is negative, a soliton “bunch” does
not form because for M i > M h, the steadiness condition (see Sec. 2) is violated and a shock wave does not form.
We recall that for M i > M h, νi = νd = 0, and De 6= 0 in negatively charged dust, a rarefaction soliton forms:
nd < nd0. The steadiness conditions are also violated for α < αmin or α > αmax [αmin and αmax are solutions of
the equation M h(α, β) = M ∗(α, β) for β > −1 or solutions of the equation M h(α, β) = M ∗∗(α, β) for β < −1].
A special “resonant” situation arises for α = α1,2(β) (see Sec. 2); as M i → M h, a region of elevated concentration
of dust particles forms.

7. Let us obtain a criterion for the strong effect of charged components of a slightly ionized dust plasma on
the neutral component. The solution of the closed problem at this stage involves considerable difficulties. Here we
study a mechanism of this process — the interaction between charged particles and neutral particles using elastic
collisions. We obtain a necessary condition for this interaction for the steady-state case, restricting ourselves to
one-dimensional fields.

The processes in a slightly ionized nonisothermal dust plasma are described by the gas-dynamic equations (2)
supplemented with the continuity equation and the equation of motion of the neutral component taking into account
the effect of charged particles on neutral particles:

∂nn

∂t
+

∂

∂x
(nnVn) = 0,

nn

( ∂
∂t

+ Vn
∂

∂x

)
Vn = −a2 ∂nn

∂x
− νninn(Vn − Vi)− νndnn(Vn − Vd), (11)

νninn = νini, νndnn = νdnd

(a is the velocity of sound and Vn is an unknown function).
For the steady-state regime, we have the relation

d

dξ
[Vn − a2

0(c− Vn)−1 + ni0n
−1
n0 Vi + nd0n

−1
n0 Vd]− VsM−1

i n−1
n0 (ni − βnd)n−1

e

dne

dξ
= 0. (12)

In the case of formation of regions with elevated concentration of charged particles, leading to the strong
effect on the neutral component, the first two terms in relation (12) should be of the order of magnitude as its last
term. Let us compare the orders of magnitude of the first and last terms in (12):

(ne − ne0)n−1
e0 ∼ δ

−1
1 δ2δ3δ4,

δ1 = ne0n
−1
n0 � 1, δ2 = ne|ni − βnd|−1, δ3 = aV −1

s ≈ (TnT
−1
e )1/2 < 1, δ4 = Vna

−1.

In the absence of a substantially nonlinear process in the neutral component, the estimate δ4 6 1 is valid.
The simplest situation with the formation of plasma bunches arises in the case of predominant effect of the dust
component, where δ2 ≈ ne|βnd|−1 � 1.

The strong effect of dust particles on the neutral component can be due to violation of the quasineutrality
condition (1). In this case, the charged dust “scatter” compaction regions of neutral particles. However, a description
of this process is beyond the model (1), (2), (11).
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